

STAINLESS TOOL STEEL

for Plastic-, Food processing-, Pharmaceutical- and Medical-Industry

INDUSTRIAL BACKGROUND

Numerous applications require the use of stainless steel resisting high mechanical stresses, abrasive and corrosive environments.

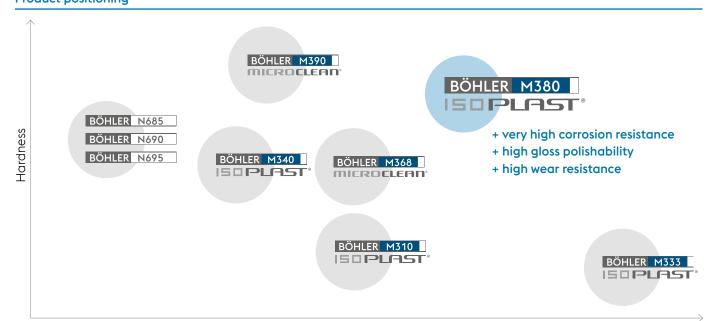
Tools often need a hardness exceeding 55 or even up to 58 HRc. Then the choice of stainless grades becomes limited.

A common grade used is 440C (1.4125, BÖHLER N695) with high C content (\sim 1%).

Consequences of high C content	 Coarse carbide structure Localized Cr depletion around large carbides High sensitivity to tempering temperature due to carbide precipitations
This leads to several limitations	 » Limited corrosion resistance » Very limited corrosion resistance at high tempering temperature » Limited toughness and fatigue resistance » Polishing difficulties (e.g. sensitivity to carbide pull out)

NEW PRESSURIZED ELECROSLAG REMELTED PLASTIC MOLD STEEL

Combines highest hardness, toughness and corrosion resistance with mirror polishability and good wear resistance


KEY BENEFITS
FOR OUR CUSTOMERS

- » Best part quality
- » Longer tool life and less maintenance
- » Lower production costs per part

PESRPressure Electro
Slag Remelting

Product positioning

Toughness, unnotched

THE SOLUTION BÖHLER M380

BÖHLER M380 ISOPLAST is a **PRESSURIZED** electroslag remelted high nitrogen alloyed martensitic plastic mold steel with an outstanding corrosion resistance and very high toughness at high hardness levels up to 60 HRc.

PESR-remelting allows a high nitrogen content which leads to a homogeneous microstructure with fine distributed carbonitrides and excellent cleanliness.

Main properties

- » Very high hardness / strength and good wear resistance
- » Very high toughness and corrosion resistance
- » Mirror polishability and good machinability
- » High suitability for PVD coating
- » Low distortion and good dimensional stability

Chemical composition

BÖHLER M380 150 PLAST

(= 1.4108, X30CrMoN 15-1)

average (%)

С	Si	Mn	Cr	Мо	N
0.30	0.60	0.40	15.0	1.0	0.40

Condition of delivery

Annealed to max. 255 HB

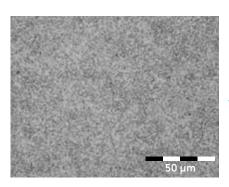
Material properties

Partial substitution of carbon with nitrogen (PESR, above solubility limit)

In combination with carbon

- » A hardness of at least 55 up to 60 HRc can be ensured
- » A microstructure incl. fine eutectic carbonitrides is obtained

Nitrogen combined with Cr and Mo leads to an improved pitting corrosion resistance.

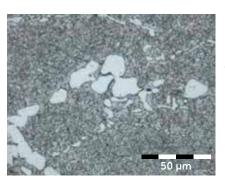

Mo ensures a secondary hardening. Mo replaces Cr in the precipitates and so Cr is kept in the matrix at a high level.

This leads to improved corrosion resistance, even when tempered at high temperature.

CORROSION RESISTANT TOOL STEELS

		BÖHLER Grades			
	Standards (Examples)	Conventional quality	Remelted Steels (ESR, PESR, VMR)	PM-Grades	AM-Powder
>58 HRc	1.4108		BÖHLER M380	BÖHLER M398 BÖHLER M390 BÖHLER M390 B	
~54 HRc	1.4125 1.4528 1.4112	BÖHLER N695 BÖHLER N690 BÖHLER N685	BÖHLER M340 L	BÖHLER M368	
~50 HRc	1.2083		BÖHLER M333 B BÖHLER M310 D BÖHLER M789		BÖHLER M789 AMPO
~40 HRc	1.2316 1.4542	BÖHLER M303	BÖHLER M303 INTERPORT		BÖHLER N700
~30 HRc	1.2316 1.2085	BÖHLER M303 BÖHLER M315 BÖHLER M314 BÖHLER M314	BÖHLER M303		

Comparison of microstructure



Microstructure

BÖHLER M380 ISOPLAST

Microstructure incl.

fine eutectic carbonitrides
is obtained

Microstructure 440C, 1.4125

HEAT TREATMENT

Tempering curves / Vacuum heat treatment with subzero cooling

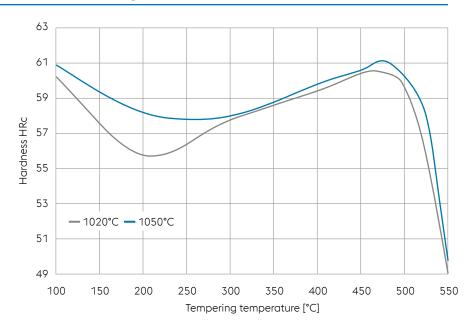
Heat treatment in vacuum furnace

Austenitizing at 1020°C/1050°C

(1868°F/1922°F)/20min/5bar

Subzero cooling highly recommended $-80 \, ^{\circ}\text{C/2}$ hrs

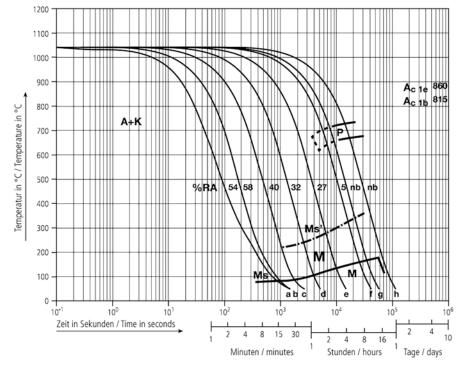
Tempering 2x2h


Heat treatment recommendation

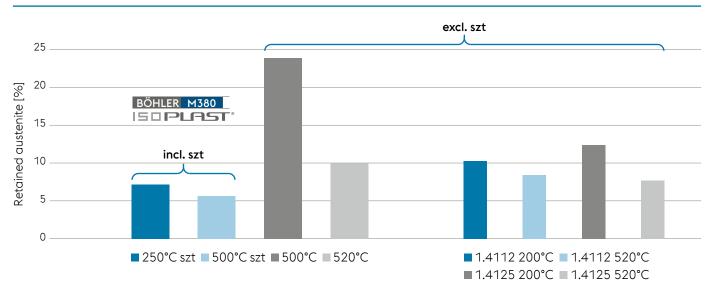
1.030 °C/-80 °C/2 x 250-350°C

for best corrosion resistance and toughness; goal hardness 56 – 58 HRc

1.030 °C/-80 °C/2 x 495-525°C


for balanced wear resistance, hardness & toughness; goal hardness 58 – 60 HRc

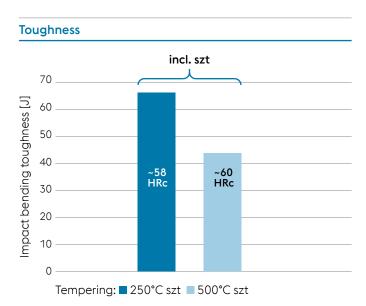
Continuous cooling CCT curves


Austenitiz	ing temperature: 1030° C			
Holding ti	me: 30 minutes			
A	Austenite			
K	Carbide			
М	Martensite			
P	Perlite			
RA	Retained austenite			
Ms'-Ms	Range of grain boundary martensite formation			

Sample	λ	HV ₁₀
а	0.5	511
b	1.1	472
С	3.0	529
d	8.0	568
e	23.0	570
f	65.0	589
g	90.0	575
h	180.0	237

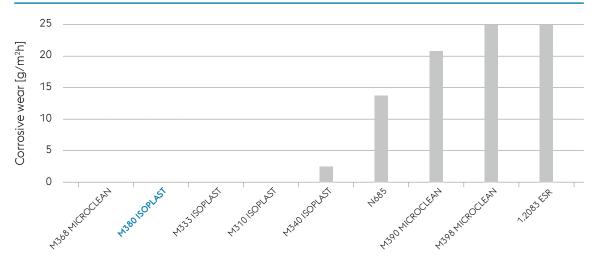
MATERIAL PROPERTIES

Retained austenite

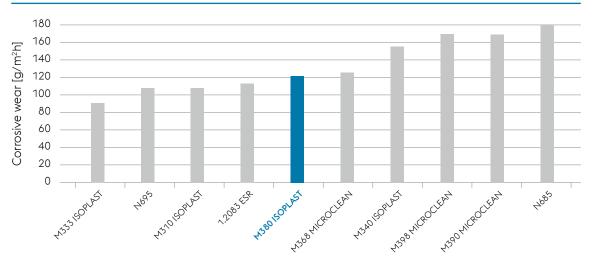


Heat treatment

Austenitizing at 1030°C (1886 °F)/20min/5bar, without/with subzero treatment (szt);


Tempering 2x2h

Low amounts of retained austenite compared to 440C,1.4125 after heat treatment incl. sub zero to ensure a high dimensional stability of the tools



Heat treatment Austenitizing at 1030°C (1886°F)/30min/5.5bar, with subzero treatment Tempering 2x2h Tested sizes: BÖHLER M380 ISOPLAST, flat 218x218mm (8.6x8.6 inches) High impact- and fracture toughness combined with high hardness, typically 59 HRc

Corrosion resistance / high tempered

Heat treatment for BÖHLER M380 ISOPLAST

Austenitizing at 1020°C (1868 °F)/20min/5bar, without subzero treatment;

Tempering 2x2h

Weight loss test: Measured after 24h in 20% boiling acetic acid

Content of N and Mo leads to very high corrosion-resistance, also if tempered at high temperature

MATERIAL PROPERTIES


POLISHING

BÖHLER grade	Polishability
BÖHLER M310 L	***
BÖHLER M333	****
BÖHLER M340	**
BÖHLER M368 I	***
BÖHLER M380	****
BÖHLER M390 I	***
BÖHLER N685	*

The special remelting technology (PESR) allows remelting in a closed vessel in a nitrogen atmosphere, which excludes oxygen. Thus an increase in degree of oxide purity level is achieved and, as a result, improved corrosion resistance, polishability, photo etching and spark eroding of the steel is realized. Due to lowest amount of primary carbides, high hardness and high homogeneity BÖHLER M380 ISOPLAST has excellent polishability properties.

This collection of positive attributes guarantees cost savings by considerably reducing polishing efforts to a mirror finish.

The comparison of BÖHLER grades in the left chart illustrates the effort reaching a mirror-polished surface with Ra = 0.04 μ m starting from a pre-ground surface.

Polishing steps

K400	K600	25 μm	14 µm	9 µm	6 µm	3 μm
coarse						fine

BÖHLER M380 ISOPLAST

APPLICATIONS

» Plastic injection molds

for long run production like medical disposal syringes, ...

» Plastic injection molds for GF-filled plastics

like automotive-, household- and electronic industry

» High gloss surface finish molds

for production of optical parts like camera lenses, transparent and decorative parts

» Screws and non return valves

for injection molding machines

» Hot runner gate parts

FOOD AND BEVERAGE

Certificate and Declaration of Conformity acc. EU-regulation No. 1935 (aqueous and acid) for M380 ISOPLAST is available

- » Screws for extrusion machines
 - for processing of food
- » Cutting type instruments and knives
- » Can closing rolls
- » Punches & dies for powder compacting

of sweets and pharmaceutical products

» Components

like portion and filling units and adaptive chucks for caps (closure system machines)

- M380 ISOPLAST is not allowed to be used
- for aviation and automotive components like bearings, ball screws,
- wear resistant parts for use in aircrafts.

Food approval

- » BÖHLER M380 ISOPLAST (BÖHLER N360 PESR) has got food approval acc. European Regulation (EC) No. 1935
- Therefore it is intended to get in contact with food aswell for aqueous as acidic applications.
- » Tests performed in low tempered condition.
- » BÖHLER M380 ISOPLAST hardened at 1020°C, sub zero -80°C, tempered at 200°C (twice for 2h)

BÖHLER M380 ISOPLAST

MACHINING GUIDELINES

Turning with carbide	annealed condition				
	finishing	semi finishing	roughing		
Cutting depth mm	0.5 - 2	1 - 4	4 - 8	above 8	
Feed mm/U	0.1 - 0.3	0.2 - 0.4	0.3 - 0.8	0.5 - 1.5	
Cutting speed m/min	130 - 260	100 - 220	80 - 140	30 - 90	
Recommended Boehlerit Geometry	FP, FMP	MP, MRP	MRP	RP, BR, BRP	
Boehlerit - carbide grade	LCP15T	LCP15T, LCP25T	LCP25T, LC240F	LC240F	
SO – Variety	P15	P15, P20	P20, P30	P30, P40	
Milling with carbide	annealed condition	on			
	finishing	semi finishing	roughing		
Cutting speed m/min	160 - 230	150 - 200	120 - 170		
Boehlerite - carbide grade	BCH10M, BCP25M	вснзом, всрзом	вснзом, всрз5м		
ISO - Variety	H10, P25	H30, P30	H30, P35		
Fz corner milling 90° (mm)	0.1 - 0.3	0.1 - 0.3	0.1 - 0.3		
Fz plan milling 45° (mm)	0.15 - 0.4	0.15 - 0.6	0.15 - 0.6		
z High feed machining (mm)	0.8 - 2.5	0.8 - 2.5	0.6 - 3.0		
Turning with carbide	Hardened to 58-60 HRC				
	finishing	semi finishing			
Cutting depth mm	0.5 - 1	0.5 - 1			
Feed mm/U	0.1 - 0.2	0.1 - 0.2			
Cutting speed m/min	40 - 60	35 - 50			
Recommended Boehlerit Geometry	FMS	MT			
Boehlerit - carbide grade	LC415Z	BCS20T			
ISO – Variety	S15/H15	S20/H20			
Milling with carbide	Hardened to 58-6	00 HRC			
	finishing	semi finishing	roughing		
Cutting speed m/min	150 - 200	120 - 170	90 - 140		
Boehlerite - carbide grade	BCP20M, BCH10M	BCP20M, BCH30M	BCP25M, BCP30M		
ISO - Variety	P20, H10	P20, H30	P25, P30		
Fz corner milling 90° (mm)	0.1 - 0.2	0.1 - 0.25	0.1 - 0.3		
Fz plan milling 45° (mm)	0.15 - 0.4	0.15 - 0.5	0.15 - 0.5		
		1.0 - 2.5	0.6 - 3.0		

NUMBERS, FIGURES AND FACTS

Physical properties at 20°C/68°F

7.72 kg/dm^3
14 W/(m.K)
430 J/(kg.K)
0.8 Ohm.mm ² /m
223 x 10 ³ N/mm ²
magnetic

Thermal expansion

between 20	0 °C and °C, 1	0 ⁻⁶ m/(m.K)		
100 °C	200 °C	300 °C	400 °C	500 °C
10.4	10.8	11.2	11.6	11.9

Modulus of elasticity

2				
100 °C	200 °C	300 °C	400 °C	
217	209	201	192	
	100 °C	100 °C 200 °C	100 °C 200 °C 300 °C	100 °C 200 °C 300 °C 400 °C

As regards applications and processing steps that are not expressly mentioned in this product description/data sheet, the customer shall in each individual case be required to consult us.

The data contained in this brochure is merely for general information and therefore shall not be binding on the company. We may be bound only through a contract explicitly stipulating such data as binding. The manufacture of our products does not involve the use of substances detrimental to health or to the ozone layer.

voestalpine BÖHLER Edelstahl GmbH & Co KG

Mariazeller Straße 25 8605 Kapfenberg, Austria T. +43/50304/20-0 E. info@bohler-edelstahl.at www.voestalpine.com/bohler-edelstahl

